Lecture 6: Growth Theory II: The Short and Long Run
 See Barro Chapter 4

Trevor Gallen

Spring, 2015

Short Run and Long Run

- We have a framework for thinking about growth

$$
\begin{gathered}
k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}} \\
\Delta^{*} k=s A k^{\alpha-1}-s \delta-n \\
y=A k^{\alpha} \\
c=s A k^{\alpha}
\end{gathered}
$$

- We want to think about how changes in k, s, A, or n, will change consumption, production, and capital in the short and long run.

Shock to Capital

- What happens if, after being at k^{*}, we suddenly lose a bunch of capital?

$$
\begin{gathered}
k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}} \\
\Delta^{*} k=s A k^{\alpha-1}-s \delta-n \\
y=A k^{\alpha} \\
c=s A k^{\alpha}
\end{gathered}
$$

- In the long run, we know nothing has changed because k^{*} hasn't changed.
- In the short run, we can see that when capital goes down
- $y \downarrow$
- $y \downarrow \Rightarrow \Delta^{*} k \uparrow, c \downarrow, r \uparrow$

Permanent Shock to the Level of Productivity

- Productivity moves from A to $A^{\prime}, A^{\prime}<A$

$$
\begin{gathered}
k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}} \\
\Delta^{*} k=s A k^{\alpha-1}-s \delta-n \\
y=A k^{\alpha} \\
c=s A k^{\alpha}
\end{gathered}
$$

- In the long run, we now know the level of capital is lower
- We have "too much" capital and "too much" production
- Therefore, we save "too much" and have a lower level of capital tomorrow, higher than long run
- We slowly converge to the steady state from above
- A period of declining consumption, declining capital, high interest rates

Permanent Shock to Depreciation

- Depreciation moves from δ to $\delta^{\prime}, \delta^{\prime}<\delta$

$$
\begin{gathered}
k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}} \\
\Delta^{*} k=s A k^{\alpha-1}-s \delta-n \\
y=A k^{\alpha} \\
c=s A k^{\alpha}
\end{gathered}
$$

- In long run, we now know the level of capital is lower
- We have "too much" capital and "too much" production
- Therefore, we save "too much" and have a lower level of capital tomorrow, higher than long run
- Higher depreciation means we converge more quickly to the steady state
- A period of declining consumption, declining capital, high interest rates

Permanent Shock to Savings Rate

- Savings moves from s to $s^{\prime}, s^{\prime}>s$

$$
\begin{gathered}
k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}} \\
\Delta^{*} k=s A k^{\alpha-1}-s \delta-n \\
y=A k^{\alpha} \\
c=s A k^{\alpha}
\end{gathered}
$$

- In long run, we now know the level of capital is higher
- We have "too little" capital
- Our $\Delta^{*} k>0$ compared to what it was
- Slowly converge to new steady state
- At first, lower consumption, then, higher consumption

Permanent Shock to Labor Growth Rate

- Population growth moves from n to $n^{\prime}, n^{\prime}>n$

$$
\begin{gathered}
k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}} \\
\Delta^{*} k=s A k^{\alpha-1}-s \delta-n \\
y=A k^{\alpha} \\
c=s A k^{\alpha}
\end{gathered}
$$

- In long run, capital (per worker) is lower
- We have "too much" capital
- Our choice of $\Delta^{*} k$ declines because n increases
- Very slowly converge to new steady state

Convergence

$>k^{*}=\left(\frac{s \delta+n}{s A}\right)^{\frac{1}{\alpha-1}}$

Parameter	k^{*}
s	+
A	+
n	-
δ	-
$\mathrm{L}(0)$	0

Initial Capital

Solow Simulation-Levels

Initial Capital

Solow Simulation-Pct of US

Initial Capital

Growth Rates vs. Initial GDP

Does Convergence Hold Up?

FIGURE 1.7 Initial income and subsequent growth in Baumol's sample (from DeLong, 1988; used with permission)

Romer figure 1.7
Q: What kind of countries will we have good historical data for?

Does Convergence Hold Up?

FIGURE 1.8 Initial income and subsequent growth in the expanded sample (from DeLong, 1988; used with permission)

Romer figure 1.8

Does Convergence Hold Up?

FIGURE 1.9 Initial income and subsequent growth in the postwar period
Romer (3rd ed) figure 1.9

Does Convergence Hold Up?

FIGURE 1.9 Initial income and subsequent growth in a large sample
Romer (4th ed) figure 1.9

Does Convergence Hold Up?

Figure 4.10 Growth Rate Versus Level of Real GDP per Person for OECD Countries

Barro figure 4.10.

Does Convergence Hold Up?

Figure 4.11 Growth Rate Versus Level of Income per Person for U.S.
States, 1880-2000

Barro figure 4.11.

Why Might Convergence Fail?

- Differences in everything we talked about, except initial capital!

An Explanation?

Real Per Capita Growth by Country: 1970-198؟

Sachs Warner 1995

An Explanation?

Sachs Warner 1995: Let's break things up by "free market"

An Explanation?

Real Per Capita Growth by Country: 1970-198s

Sachs Warner 1995

An Explanation?

Sachs Warner 1995

An Explanation?

- Note that "socialism" isn't your father's socialism
- Typified by state ownership of labor, land, materials
- Typified by state planning and price setting
- What we might call with a broad brush "communism" or "command-and-control"
- Not what we mean by Northern Europe or original EU members

Conclusion

- We have our first scientific prediction from a model
- Countries growth rates should be linear in log-initial-capital
- Initial success based on bad data
- Failure looking at world at large
- Success looking at advanced/similar countries
- Success looking at states within the US
- Success looking at "free market" economies

